Coarse-to-Fine Classification and Scene Analysis

Donald Geman

Department of Applied Mathematics and Statistics Center of Imaging Science, Whitaker Institute Johns Hopkins University

Joint Work with Sachin Gangaputra and Gilles Blanchard

Outline

- □ Semantic Scene Interpretation
- A Statistical Framework for CTF Classification
 - Part I: Exploring a Hierarchy: "20Q Theory"
 - Part II: Constructing a Hierarchy
 - Part III: Assigning Likelihoods: The "Trace Model"

Semantic Scene Interpretation

- □ Understanding how brains interpret sensory data, or computers might, is a major challenge.
- ☐ Assume:
 - One grey-level image I. (Although cues from color, motion or depth are likely crucial to recognition.)
 - There is objective reality Y(I), at least at the level of key words.

Confounding Factors

- ☐ Local (but not global) ambiguity
- Arbitrary views and lighting
- Dominating clutter
- Infinite-dimensional classification

and ...

Three Dilemmas

- □ Small Samples
- Bias vs. Variance
- Invariance vs. Selectivity

Detecting Boats

Where Are the Faces? Whose?

Within Class Variability

How Many Samples are Necessary?

Recognizing Context

Dreaming

A description machine

$$f: \mathbf{I} \to \mathbf{Y}$$

from an image $I \in \mathbf{I}$ to a description $Y \in \mathbf{Y}$ of the underlying scene.

Better Yet: A sequence of increasingly fine interpretations $Y = (Y_1, Y_2, ...)$, perhaps "nested."

Organizing Principles

- Discrimination: Proceed (almost) directly from data I to decision boundaries.
- Data Generation: Construct a joint statistical model for (features of) images I and interpretations Y.
- Efficiency: Exploit shared components among objects and interpretations to search for many things at once.

Efficiency-Driven Perception

Efficient representation, discrimination and computation all result from exploiting common "parts" and sub-interpretations.

Examples:

- Compositional vision: A "theory of reusable parts"
- Hierarchies of image patches or fragments
- Coarse-to-fine classification

Outline

- □ Semantic Scene Interpretation
- A Statistical Framework for CTF Classification
 - Part I: Exploring a Hierarchy: "20Q Theory"
 - Part II: Constructing a Hierarchy
 - Part III: Assigning Likelihoods: The "Trace Model"

CTF Classification

Coarse-to-fine modeling of *both* the interpretations *and* the computational process:

- Unites representation and processing.
- Concentrates processing on ambiguous areas.
- Evidence that coarse information is conveyed earlier than fine information in neural responses to visual stimuli.

Density of Work

Original image

Spatial concentration of processing

Statistical Framework

- □ There are natural groupings A ⊂ Y corresponding to "attributes"
- In fact, there are natural nested partitions or hierarchies of attributes

$$H_{attr} = \{ A_{\xi}, \xi \in T \}$$

where T is a tree graph.

Example: Attribute Hierarchies

Example: Face Detection

- \square I = subimage W (64x64 region)
- Arr $Y = \{(z, \sigma, \phi): z \in 8x8, 8 \le \sigma \le 15, -20^0 \le \phi \le 20^0 \}$
- \square H_{att} : Constructed by considering 4 possible partitions for each "pose cell" A:
 - Quaternary split in location
 - Binary split in scale or orientation
 - No split (cascade)

Example: Pose Space

Statistical Framework (cont)

- □ For each $\xi \in T$, consider a binary test $X_{\xi} = X_{A_{\xi}}$ dedicated to $H_0: Y \in A_{\xi}$ against $H_a: B_{alt(\xi)} \subset \{Y \notin A_{\xi}\}$
- □ Estimate Y by exploring $H_{test} = \{ X_{\xi}, \xi \in T \}$ Constraint: Each X_{ξ} has a null false negative rate.
- □ Detections D: Explanations y ∈ Y not ruled out by any (performed) test:
 - $D = \{ y \in Y : X_{A_{\xi}} = 1 \text{ for every } \xi \text{ such that } y \in A_{\xi} \}$

Example

- □ A recursive partitioning of Y with four levels; there is a binary test for each of the 15 cells.
- ☐ (A): Positive tests are shown in black.
- \square (B): *D* is the union of leaves 3 and 4.
- (C): Tests performed under coarse-to-fine search.

Outline

- Semantic Scene Interpretation
- A Statistical Framework for CTF Classification
 - Part I: Exploring a Hierarchy: "20Q Theory"
 - Part II: Constructing a Hierarchy
 - Part III: Assigning Likelihoods: The "Trace Model"

Part I: A 20Q Theory

- ☐ Strategy: Adaptive (tree-structured) testing procedure:
 - $s \in S^0 \to X_{\xi(s)}$
 - lacksquare $s \in \partial S \to \hat{Y}(s)$, the surviving explanations after testing.
- \square Cost: $c(X_{\xi})$

Representation vs. Processing

Representation tree

Decision tree representing a testing strategy

Computational Cost

Cost of Testing: The sum of the costs before reaching a decision:

$$C_{test}(S) = \sum_{s \in \partial S} I_{H_s} \sum_{r \downarrow s} c(X_{\xi(r)})$$

$$E[C_{test}(S)] = \sum_{s \in S^0} c(X_{\xi(s)}) P(H_s) = \sum_{\xi \in T} c(X_{\xi}) q_{\xi}(S)$$

where $q_{\xi}(S)$ is the probability of performing test X_{ξ} under the strategy S. H_s is the event node s is reached.

 \square Total Computation: $E[C_{test}(S) + c^*|\hat{Y}(S)|]$

Optimization

- □ When are the strategies which minimize total computation CTF, meaning:
 - \blacksquare |A| \downarrow A monotonic decrease in scope.
 - \blacksquare β \uparrow A monotonic increase in power
- ☐ Two Fundamental Assumptions:
 - Background domination: Take $P=P_0=P(.|Y=0)$ for measuring power and mean computation.
 - Conditional independence: The tests for distinct sets in H_{test} are independent under P_0

CTF Optimality Criterion

THEOREM: (G. Blanchard/DG) CTF is optimal if

$$\forall \xi \in T, \quad \frac{c(X_{\xi})}{\beta(X_{\xi})} \le \sum_{\eta \in \mathcal{C}(\xi)} \frac{c(X_{\eta})}{\beta(X_{\eta})}$$

where $C(\xi) = direct \ children \ of \ \xi \ in \ T$.

☐ A numerical example:

$$c(X_1) = c(X_2) = c(X_3)$$

 $\beta(X_1) = 1/2, \ \beta(X_2) = \beta(X_3) = 9/10$
Do X₁ first!

Outline

- Semantic Scene Interpretation
- A Statistical Framework for CTF Classification
 - Part I: Exploring a Hierarchy: "20Q Theory"
 - Part II: Constructing a Hierarchy
 - Part III: Assigning Likelihoods: The "Trace Model"

Part II: Hierarchy Design

- ☐ Goal: Construct the hierarchy and the tests simultaneously from training data
- □ Assume a universal learning algorithm

$$(A, L) \rightarrow X_A$$

with
$$\alpha(X_A) = P(X_A = 0 | Y \in A) = 0$$

- $\square \ \ \mathcal{L} = \mathcal{L}_{+} \cup \mathcal{L}_{-}$ represents training examples
 - $\blacksquare \mathcal{L}_+ \sim \{ Y \in A \}$
 - $\blacksquare \mathcal{L} \sim B_{alt(A)} \subset \{ Y \not\in A \}$

"Right" Alternative Hypothesis for CTF Search

□ Alternate hypothesis at ξ : Conditional distribution of the data given $Y \notin A_{\xi}$ and the test X_{ξ} is performed. Due to CTF search X_{ξ} is performed \Leftrightarrow all ancestor tests are performed and are positive:

$$B_{alt(\xi)} = \{ Y \notin A_{\xi} \} \cap \{ X_{\eta} = 1 \ \forall \ \eta \in \mathfrak{A}(\xi) \}$$

where $\mathfrak{A}(\xi)$ = ancestors of node ξ in T.

Which Decomposition?

Hierarchy Design (cont)

- \square Let $\Lambda(A) = \{A_1, A_2, ..., A_n\}$ denote a partition of A
- \square Combined test for $\Lambda(A)$:

$$X_A = \begin{cases} 1 & \text{if } X_{A_i} = 1 \text{ for some i} \\ 0 & \text{otherwise} \end{cases}$$

- \square Cost $c(X_A) = \sum_i c(X_{A_i})$

Hierarchy Design (cont)

 \square Given partitions $\Lambda_1, \Lambda_2, ..., \Lambda_k$ of A, choose:

$$i^* = \underset{1 \le i \le k}{\operatorname{arg\,min}} \frac{c(X_{\Lambda_i})}{\beta(X_{\Lambda_i})}$$

□ Now split A into $|A_{i*}|$ children and add these attributes to H_{attr} and the corresponding tests to H_{test} .

Special Case

□ Suppose $c(X_{\Lambda_i}) \equiv c$. For example,

$$c(A) \propto |A|$$
 for every $A \subset Y$ so that $c(X_{A_i}) \equiv |A|$

- □ Then i^* is the partition which minimizes the false positive rate (per unit cost).
- \square Recursive construction of H_{attr} : Select the node with the highest false positive rate. Choose the split that minimizes the new (estimated) false positive rate.

Example: Face Detection

The first two levels of construction. Indicated are false positive rates.

Example: Face Detection (cont)

Outline

- Semantic Scene Interpretation
- A Statistical Framework for CTF Classification
 - Part I: Exploring a Hierarchy: "20Q Theory"
 - Part II: Constructing a Hierarchy
 - Part III: Assigning Likelihoods: The "Trace Model"

Part III: Trace Model for Assigning Likelihoods to Detections

- Encodes the computational history using a graphical representation
- T: tree underlying the hierarchy
- \square S(I): subtree of T determined by BFCTF search on image I
- $\square Z(I) = \{ X_{\eta'} \eta \in S(I) \}$
- Trace: labeled subtree

Trace Representation

Tree hierarchy

Subtree from BFCTF search

Labeled tree: test responses

Trace: labeled subtree

Classifier Realizations to Traces

A single trace produced by four different full tree realizations.

Trace Representation (cont)

Top: A 3 node hierarchy and its 5 possible traces

Bottom: A 7 node hierarchy and 5 of its 26 possible traces

Trace Distributions

The mapping $\tau: X \to Z$, partitions the configuration space:

$$\sum_{z \in \mathcal{Z}} p_{\mathbf{X}}(\tau^{-1}(z)) = 1$$

THEOREM: Let $\{p_{\eta}, \eta \in T\}$ be any set of numbers with $0 \le p_{\eta} \le 1$. Then

$$P(z) = \prod_{\eta \in S_z} p_{\eta}(x_{\eta})$$

defines a probability distribution on traces where S_z is the subtree identified with z and $p_n(1) = p_n$ and $p_n(0) = 1 - p_n$

$$p_{\eta}(x_{\eta}) = P(X_{\eta} = x_{\eta} | X_{\xi} = 1, \forall \ \xi \in \mathfrak{A}(\eta))$$

Trace Distributions (cont)

Proof:

- Follows from "peeling" arguments in graphical models
- For a given terminal node, divide the traces into 3 groups:
 - η ∉ S
 - $\eta \in S, x_{\eta} = 1$
 - $\eta \in S$, $x_{\eta} = 0$
- With $p_n(1) + p_n(0) = 1$ node η is dropped from the summation
- Recursion continues by looping through all the leaves

Application: Face Detection

- ☐ *Learning*:
 - Tests: Adaboost with binary edge features. Any other learning algorithm could be used as well.
 - Trace Model: Learn the probabilities under each interpretation.
- ☐ *Interpretations*:
 - bkg: represents "no face" (in the subimage)
 - lacksquare θ_{ξ} : represents faces with average pose in A_{ξ} , $\xi \in \partial T$

Estimated Trace Models

Object and background trace parameters: The segment of the full hierarchy that corresponds to the complete chain.

Application: Face Detection (cont)

Trace-based likelihood ratio test:

$$\frac{P(Z(W)|\theta_{\xi})}{P(Z(W)|bkg)} \ge \tau$$

- Z(W): trace of image block W
- Performed only on complete chains in W
- \square Requires "learning" of trace models conditional on each pose $\theta_{\mathcal{E}}$.

Pruning Detections

Top: Raw results of pure detection

Bottom: False positives are eliminated with the trace model

Pruning Detections (cont)

Detection rate vs. false positives on the MIT+CMU test set;

Ex: 0.77 FPs/image at 89.1% detection with |L|=400

Detection Results

Face Tracking

Conclusions

- Hardwiring efficiency is a powerful organizing principle.
- ☐ Stochastic models on *processing* histories is promising.
- ☐ Eventually must test specific hypotheses against specific alternatives.
- ☐ Finish the job with rich, contextual models, e.g., *compositional vision*.